Influence of ants on soil and leaf-litter food webs in two types of rainforests in Sarawak / Malaysia by stable isotope analysis – first outcomes

Dirk Mezger1, Jens Dyckmans2, Martin Pfeiffer1

1 Institute of Experimental Ecology, University of Ulm - 2 Centre for Stable Isotope Research & Analysis, University of Göttingen

Introduction

Ants are very important in tropical soil ecosystems, not only because of their high number of species and individuals, but also due to their importance in ecosystem functioning. We compared the diversity of ants and their role in the food web in two forest types (alluvial- and limestone forest) as part of a large ecological investigation. We analyzed the trophic positions of ant species to investigate community structure and niche patterns of ants. Here we present some preliminary results of our study.

Fig. 1 Several Pheidole species showed little differences in their trophic position. Many species of this genus seem to be omnivores with a mixed diet of seeds and arthropods.

Diversity and individual numbers

After evaluation of only 11 samples we found 117 species of ants, 67 in alluvial forest and 83 species in limestone forest. Species accumulation curves showed still no species saturation (Fig 3). Species number per m² in limestone forest (20 species) was significantly higher than in alluvial forest (13 species/ m²); t-test: t = 3.83; p > 0.002). The number of ant individuals was higher in the limestone forest (434 ants / m²) than in the alluvial forest (257 individuals / m²).

Discussion

Our data demonstrate that ants occupy a wide range of trophic positions in the soil food web and thus are crucial for ecosystem functioning in tropical forests. All functional group of ants were present in both kind of forests. Ant genera showed different patterns of trophic radiation among their species, with Pheidole exhibiting only a narrow range of trophic niches, compared to the large radiation of Strumigenys. Delta values for N of soil and leaf litter differed greatly between forest types, making a correction of delta-values for species necessary in direct comparisons.

Methods

This study was conducted in Gunung Mulu National Park, in the north-eastern part of Sarawak/Malaysia on Borneo. Assessment of diversity and specimen numbers was done with Winkler bags according to the ALL Protocol for the study of leaf invertebrates and their potential food sources and predators. We combined the analysis of ant specimens numbers and their potential food sources and predators with an isotope mass spectrometer (Delta Plus with Conflc III interface, Finnigan MAT) and a NA1110 element analyser (CE -Instruments).

Results: Food web

The Nδ 15 ratio of ants in two forest types (49 species involved) varied strongly; spanning over nearly 9 δ 15 N units (0.2 to 8.8 δ 15 N) in alluvial forest (Fig 2) and over 8 δ 15 N units (-1.2 to 6.9 δ 15 N) in limestone forest (51 species involved, Fig. 4). As on average trophic levels differ by 3.4 δ 15 N units (Minagawa and Wada 1984), we can conclude that ants cover three trophic levels in both types of forests; they comprise primary consumers (possibly via honeydew from trophobionts) as well as high level predators. While several Pheidole species showed little separation in their trophic position in alluvial forest, species of genus Strumigenys covered a much broader range (Fig. 1). The three most important subfamilies of ants showed a significant difference in their delta N values in both kind of forests (ANOVA alluvial forest (af): n=93 F=27.1 p<0.001; limestone forest (lf): n=45 F=35.0 p<0.001). Formicidae at: 2.4 (SD=1.4) if: 0.5 (SD=1.2); Myrmicininae at: 4.8 (SD=1.1) if: 1.8 (SD=1.2); Ponerinae at: 5.8 (SD=0.7) if: 4.3 (SD=1.4).

Fig. 2 Measurements of δ 15 N ratios of ants in the alluvial forest at Gunung Mulu, Borneo. The base line for leaf-litter is marked with green, that for soil with red. Trophic levels are separated by green dotted lines. Ant comprised species of three trophic levels: trophobiont tending ants, omnivorous species and predators.

Fig. 3 Species accumulation curves of the alluvial (+) and limestone forest (+) sites. For limestone forest, 95% confidence intervals were added (+). The curves show still no species saturation.

Methods

This study was conducted in Gunung Mulu National Park, in the north-eastern part of Sarawak/Malaysia on Borneo. Assessment of diversity and specimen numbers was done with Winkler bags according to the ALL Protocol for the study of leaf invertebrates and their potential food sources and predators. We combined the analysis of ant specimens numbers and their potential food sources and predators with an isotope mass spectrometer (Delta Plus with Conflc III interface, Finnigan MAT) and a NA1110 element analyser (CE -Instruments).

Results: Food web

The Nδ 15 ratio of ants in two forest types (49 species involved) varied strongly; spanning over nearly 9 δ 15 N units (0.2 to 8.8 δ 15 N) in alluvial forest (Fig 2) and over 8 δ 15 N units (-1.2 to 6.9 δ 15 N) in limestone forest (51 species involved, Fig. 4). As on average trophic levels differ by 3.4 δ 15 N units (Minagawa and Wada 1984), we can conclude that ants cover three trophic levels in both types of forests; they comprise primary consumers (possibly via honeydew from trophobionts) as well as high level predators. While several Pheidole species showed little separation in their trophic position in alluvial forest, species of genus Strumigenys covered a much broader range (Fig. 1). The three most important subfamilies of ants showed a significant difference in their delta N values in both kind of forests (ANOVA alluvial forest (af): n=93 F=27.1 p<0.001; limestone forest (lf): n=45 F=35.0 p<0.001). Formicidae at: 2.4 (SD=1.4) if: 0.5 (SD=1.2); Myrmicininae at: 4.8 (SD=1.1) if: 1.8 (SD=1.2); Ponerinae at: 5.8 (SD=0.7) if: 4.3 (SD=1.4).

Music and individual numbers

After evaluation of only 11 samples we found 117 species of ants, 67 in alluvial forest and 83 species in limestone forest. Species accumulation curves showed still no species saturation (Fig 3). Species number per m² in limestone forest (20 species) was significantly higher than in alluvial forest (13 species/ m²); t-test: t = 3.83; p > 0.002). The number of ant individuals was higher in the limestone forest (434 ants / m²) than in the alluvial forest (257 individuals / m²).

Discussion

Our data demonstrate that ants occupy a wide range of trophic positions in the soil food web and thus are crucial for ecosystem functioning in tropical forests. All functional group of ants were present in both kind of forests. Ant genera showed different patterns of trophic radiation among their species, with Pheidole exhibiting only a narrow range of trophic niches, compared to the large radiation of Strumigenys. Delta values for N of soil and leaf litter differed greatly between forest types, making a correction of delta-values for species necessary in direct comparisons.

Methods

This study was conducted in Gunung Mulu National Park, in the north-eastern part of Sarawak/Malaysia on Borneo. Assessment of diversity and specimen numbers was done with Winkler bags according to the ALL Protocol for the study of leaf invertebrates and their potential food sources and predators. We combined the analysis of ant specimens numbers and their potential food sources and predators with an isotope mass spectrometer (Delta Plus with Conflc III interface, Finnigan MAT) and a NA1110 element analyser (CE -Instruments).

Results: Food web

The Nδ 15 ratio of ants in two forest types (49 species involved) varied strongly; spanning over nearly 9 δ 15 N units (0.2 to 8.8 δ 15 N) in alluvial forest (Fig 2) and over 8 δ 15 N units (-1.2 to 6.9 δ 15 N) in limestone forest (51 species involved, Fig. 4). As on average trophic levels differ by 3.4 δ 15 N units (Minagawa and Wada 1984), we can conclude that ants cover three trophic levels in both types of forests; they comprise primary consumers (possibly via honeydew from trophobionts) as well as high level predators. While several Pheidole species showed little separation in their trophic position in alluvial forest, species of genus Strumigenys covered a much broader range (Fig. 1). The three most important subfamilies of ants showed a significant difference in their delta N values in both kind of forests (ANOVA alluvial forest (af): n=93 F=27.1 p<0.001; limestone forest (lf): n=45 F=35.0 p<0.001). Formicidae at: 2.4 (SD=1.4) if: 0.5 (SD=1.2); Myrmicininae at: 4.8 (SD=1.1) if: 1.8 (SD=1.2); Ponerinae at: 5.8 (SD=0.7) if: 4.3 (SD=1.4).

Fig. 1 Several Pheidole species showed little differences in their trophic position. Many species of this genus seem to be omnivores with a mixed diet of seeds and arthropods.

Fig. 2 Measurements of δ 15 N ratios of ants of the alluvial forest at Gunung Mulu, Borneo. The base line for leaf-litter is marked with green, that for soil with red. Trophic levels are separated by green dotted lines. Ant comprised species of three trophic levels: trophobiont tending ants, omnivorous species and predators.

Fig. 3 Species accumulation curves of the alluvial (+) and limestone forest (+) sites. For limestone forest, 95% confidence intervals were added (+). The curves show still no species saturation.

*Corresponding author: dirk.mezger@uni-ulm.de